
The Performance and Energy Efficiency Potential of FPGAs in Scientific Computing

Tan Nguyen, Samuel Williams
Computational Research Division

Lawrence Berkeley National Laboratory
{TanNguyen, SWWilliams}@lbl.gov

Marco Siracusa
DEIB

Politecnico di Milano
marco.siracusa@mail.polimi.it

Colin MacLean, Douglas Doerfler, Nicholas J. Wright
National Energy Research Scientific Computing

Lawrence Berkeley National Laboratory
{ColinMacLean, DWDoerf, NJWright}@lbl.gov

Abstract—Hardware specialization is a promising direction
for the future of digital computing. Reconfigurable technologies
enable hardware specialization with modest non-recurring
engineering cost. In this paper, we use FPGAs to evaluate the
benefits of building specialized hardware for numerical kernels
found in scientific applications. In order to properly evaluate
performance, we not only compare Intel Arria 10 and Xilinx
U280 performance against Intel Xeon, Intel Xeon Phi, and
NVIDIA V100 GPUs, but we also extend the Empirical Roofline
Toolkit (ERT) to FPGAs in order to assess our results in terms
of the Roofline Model. Although FPGA performance is known
to be far less than that of a GPU, we also benchmark the energy
efficiency of each platform for the scientific kernels comparing
to microbenchmark and technological limits. Results show that
while FPGAs struggle to compete in absolute terms with GPUs
on memory- and compute-intensive kernels, they require far
less power and can deliver nearly the same energy efficiency.

Keywords-Hardware Reconfigurability, FPGAs for HPC,
Empirical Roofline Toolkit

I. INTRODUCTION

The last decade has seen a paradigm shift in HPC cen-
ters as year-over-year CPU performance slowed and power
emerged as a major constraint. In order to meet the ever in-
creasing demands for higher workload performance and ca-
pability in a power- and cost-constrained environment, HPC
centers have the incentive to explore alternative technologies.
Fifteen years ago researchers began experimenting with
GPUs, hypothesizing that the high throughput performance
and low cost demands of gaming would synergize with the
needs of HPC. Although GPUs certainly had their deficien-
cies, five years of evolution, innovation, and adaptation made
them viable and another ten years of performance scaling
made them generally superior to multicore and manycore
CPU offerings in many cases. As a result, today many of
the top HPC centers in the world have embraced GPUs or
some other form of accelerated computing.

Although GPUs can satisfy the throughput computing re-
quirements of many applications, they have their limitations.
In order to tap into the full potential of a GPU, programmers
must rewrite their applications in a hybrid programming
model using different models for distributed memory com-
munication, on-node shared memory computation (multi-
core), and accelerated (GPU) computation. GPUs, being
highly parallel architectures, require massive, coarse-grained
parallel operations to attain superior performance. Although

they have embraced double-precision arithmetic (essential
for numerical simulations) and 16-bit precision (essential
for machine learning), they have limited support for narrow
integer data types (int4, int8) that might be needed in the
fields of bioinformatics or graph analytics. Perhaps more
limiting in the distributed memory environment, the small-
message communication performance of a GPU can often
suffer compared to a latency-optimized CPU. This can result
in the raw compute potential being underutilized.

As GPUs transition from principally a graphics processor
into a hyperscalar data center processor optimized for deep
learning, their power constraints have been unbridled (en-
abling higher energy efficiency on AI codes) while demand
has led to a substantially high price. These trends imperil the
suitability for GPUs in the HPC environment where energy
efficiency is not predicated on AI performance, and there is
price sensitivity.

At the National Energy Research Scientific Computing
Center (NERSC) [1], one can find many large-scale appli-
cations in various science domains, including chemistry, nu-
clear physics, astrophysics, climate, and life science. Many
of these codes have been heavily-optimized for multicore
CPUs and GPUs. Nevertheless, there is a sizable fraction
of the NERSC workload for which CPUs are not currently
used [2]. Thus, even if a GPU were to provide infinite
speedup for NERSC’s GPU-accelerated applications, the net
benefit to overall center performance (throughput) is limited
to a factor of 2-3×.

Unlike the traditional Von Neumann instruction proces-
sor architectures (including both CPUs and GPUs) where
programs, stored in memory, are sequences of instructions,
Field-Programmable Gate Arrays (FPGA) represent a dis-
tinct class of reconfigurable spatial architectures in which the
entirety of the program is realized as a sequential logic cir-
cuit in hardware. Thus, instead of instructions being fetched,
decoded, and executed on time-multiplexed functional units,
operations can be executed in a pipelined manner on a FPGA
by sending them through the circuit. There is no instruction
decode, register files, or caches. Rather, FPGAs are built
from an array of reconfigurable logic blocks called LUTs
(Look Up Tables) that the compiler configures and inter-
connects to form a sequential logic circuit. Newer FPGA
architectures have instantiated hardened functional units for
arithmetic, integrated registers and block RAM (BRAM) for



local storage, included integrated ARM cores and NICs, and
use the latest HBM memory technology. Ultimately, FPGAs
allow users to create a custom architecture optimized for
each computational kernel in their program (for example
using FIFOs instead of caches or 3-element SIMD units).

In this paper, we explore the potential for FPGAs in the
HPC environment along the axes of performance, energy
efficiency, and programmability. To that end, we evaluate
both Intel’s Arria 10 GX1150 and Xilinx’s Alveo U280. We
commence with a study of the peak performance and effi-
ciency as a function of data reuse using the well-established
Roofline Model [3] to frame the conversation. We then
proceed by examining three HPC kernels (SGEMM, SpMV,
and Smith-Waterman) spanning a range of compute intensity,
parallelism, synchronization requirements, and underlying
data type. In order to provide context, we compare against
both the energy efficiency of underlying memory technolo-
gies (an ideal architecture imposes as little energy overhead
as possible) as well as existing CPU and GPU architectures
— Intel Xeon (Haswell), Intel Xeon Phi (Knights Landing),
and NVIDIA V100 (Volta) GPU. This highlights the value
of DDR and MCDRAM/HBM memory technologies as well
as multicore, manycore, and GPU architectures.

II. RELATED WORK

Over the last decade, several publications investigated the
benefits of using FPGA devices in specific domains such as
Machine Learning [4–6], Linear Algebra [7, 8] and Image
Processing [9, 10]. However, the resulting considerations are
not general enough to provide a thorough FPGA characteri-
zation. In this direction, other works [11–15] analyzed FPGA
performance by accelerating common benchmark suites and
comparing the obtained results with other architectures.
In particular, Cong et al. [15] proposed an FPGA-GPU
comparison on the Rodina [16] benchmarks and provided
a performance breakdown based on an analytical model. By
means of this method, the authors identified the low FPGA
memory bandwidth as the main limiting factor in several
benchmarks. However, the authors used the analytical model
to estimate the performance benefit of running the kernels
on higher-bandwidth FPGA boards such as the Xilinx Alveo
U280 now available on the market. In fact, this board
provides an aggregate bandwidth an order of magnitude
higher than previous DDR-based FPGA boards, tightening
the gap between FPGA and GPU bandwidth availability. The
projected results justify the effort several authors recently
spent in benchmarking [17] and microbenchmarking [18]
this device. However, despite the appealing results achieved
by the authors, these analyses have not been directly com-
pared against other accelerators.

The proposed work, instead, considers DDR-based and
newer HBM-based FPGA boards for a performance and
power efficiency comparison with other accelerators such
as multi-core CPUs and GPUs. This comparison is done

through a selection of kernels that stress several FPGA
components under different loads. In this way, we enable
an easier and parametric performance breakdown better
highlighting architectural limitations. As in Cong et al. [15],
we discuss our considerations through a performance model
(i.e. Roofline). Although the literature already proposes
some FPGA Roofline model formulations [19, 20], these
works mainly focus on FPGA optimization. As such, the
authors do not discuss any architectural characterization
nor cross-architectural comparison by means of this model.
Moreover, these works do not take into account energy-
efficiency [21, 22], a fundamental aspect for FPGA devices.

III. EXPERIMENTAL SETUP

A. Evaluated Architectures

In this paper, we evaluate the performance and energy
potential of two FPGAs — the Intel Arria 10 GX 1150 [23]
and the Xilinx Alveo U280 [24]. The relevant features of the
two architectures are summarized in Table I. Both FPGAs
integrate over one million LUTs and thousands of hardened
multipliers, however their theoretical peak performance is
lower than a GPU owing to their greatly reduced nominal
frequency. Many HPC applications have a low arithmetic
intensity (FLOP:Byte ratio) which places high demands on
the memory subsystem. Both FPGAs include 50-66MiB of
BRAM (far more than the typical CPU or GPU cache ca-
pacity) allowing for software-defined architectures to exploit
spatial and temporal locality. This is complemented by am-
ple register space. However, the Arria 10 only includes two
channels of DDR memory limiting its memory bandwidth to
34GB/s. This is far less than a typical CPU and roughly 25×
lower than the typical GPU. Conversely, the U280 includes
both DDR and HBM memory, the latter providing a little
better than half the bandwidth of a modern GPU. In this
paper, we will benchmark these architectures to determine
their attainable memory bandwidth and compute potential.

In order to provide context and comparisons to contem-
porary architectures, we also run experiments on CPU and
GPU systems at NERSC [25]. Whereas the CPUs are DDR-
based and the GPUs-HBM based, we also run on NERSC’s
Knights Landing (KNL) system in order to explore CPU
cores with MCDRAM (HBM-like) memory technology.

The V100 (Volta) is NVIDIA’s flagship GPU. It includes
5,120 single-precision FMAs running at 1.5GHz and more
than 800GB/s of HBM memory bandwidth. Although this
provides exceptional peak performance, it is predicated on
users expressing massive data parallelism and comes with
more than a 200W power requirement. Memory latency is
hidden via massive multithreading. As such, performance
and energy efficiency is highly application-dependent.

NERSC’s Cori system includes two partitions. The first
uses conventional CPUs in the form of dual-socket Intel
Xeon E5-2698 v3 (Haswell) nodes. Each node includes 32
cores running at a nominal 2.3GHz supporting AVX2 (total

2



Resource Intel Arria 10 GX1150 Xilinx Alveo U280 Intel Haswell (2P×16c) Intel Knights Landing (68c) NVIDIA V100
Peak Frequency 0.45GHz 0.45GHz 2.3GHz 1.4GHz 1.53GHz

Logic Blocks 1150K Logic Elements 1,304K LUTs - - -
32b FPUs 1,518 DSPs 9,024 slices 512 2,176 5,120

Theoretical Peak 1.37 TF/s - 2.35 TF/s 5.2 TF/s 15.7 TF/s
SRAM 66MiB BRAM 53MiB BRAM 80MiB L3$ 1MiB L2$/2 cores 6 MiB L2

256KiB L2$/core 32KiB L1$/core 96KiB L1$/SM
Registers 213KB 326KB 5KiB/core 4KiB/core 256KiB/SM

DDR Pin Bandwidth 34GB/s 38GB/s 136GB/s - -
HBM Pin Bandwidth - 460GB/s - 460GB/s 900GB/s

Table I: Hardware specifications of studied processor architectures

of 512 FMAs). Collectively, the node’s 8 DDR-3 channels
provide a theoretical pin bandwidth of 136GB/s.

For throughput-intensive applications, the Intel Xeon Phi
7250 (Knights Landing) provides the bulk of Cori’s per-
formance. Each manycore processor includes 68 cores each
with two AVX-512 vector units (2176 32b FMAs) running at
1.4GHz. Each of the single socket nodes instantiates 16GiB
of MCDRAM memory providing more than 460GB/s of
memory bandwidth. Like the V100 GPU, and to a lesser
extent the Haswell CPU, attaining peak performance on the
KNL processor is predicated on massive data parallelism.
However, unlike the GPUs, both KNL and Haswell exploit
hardware stream prefetchers to hide memory latency.

B. Programming Models

As this paper is focused on the potential performance and
energy efficiency gains FPGAs might provide over CPUs
or GPUs, we are willing to sacrifice some degree of pro-
ductivity and portability in order to maximize performance.
Although writing codes in RTL might maximize FPGA
performance, such low-level programming is anathema to
the large, long-lived HPC codes found at NERSC. Rather,
programming in a high-level language and enduring pro-
gramming model is prized. To that end, most FPGA code
is written in OpenCL (Arria 10 spatial locality benchmark
used DPC++) as OpenMP on FPGAs was judged to be too
immature. Although OpenCL can be used for CPUs and
GPUs, OpenCL software stacks have fallen behind compared
to contemporary OpenMP and CUDA compilers. Thus, we
use OpenMP for Haswell and KNL and CUDA for the V100.
There is an exception with the matrix multiply kernel where
we use MPI to scale to all the 32 cores of two Haswell
processors. This choice comes from the underlying SUMMA
algorithm [26] which can hide communication cost well, but
was presented with only an MPI implementation.

C. Performance and Power Instrumentation

Arria 10 and Alveo U280 power measurements were
conducted using the FPGA’s self-reported statistics accessed
through the Intel Open Programmable Acceleration Engine
(OPAE) and Xilinx Board Utility, respectively. To measure
performance of our benchmarks, we averaged multiple trials.
The number of trials was dependent upon the amount of

data read each trial, with longer reads using fewer trials.
In a few cases where we report the maximum performance
among trials, we explicitly mention this methodology in the
performance discussion.

IV. FPGA MICROBENCHMARKS

Although CPUs and GPUs can often sustain a high
fraction of compute or bandwidth, there have been instances
where sustained performance falls well below peak perfor-
mance. As theoretical (marketing) numbers cannot always
be trusted, it falls on the user to benchmark their systems to
provide realistic guidance as to architecture performance.
In this paper, we characterize FPGAs along two axes:
performance as a function of temporal locality (arithmetic
intensity) and bandwidth as a function of spatial locality.
The former allows us to assess how well the FPGA software
stack can identify and exploit reuse in a pipeline as well
as an instruction processor can exploit reuse through a
hardware cache. The latter informs us of how well the
FPGA software stack can utilize the memory subsystem
under different memory access patterns.

A. Temporal Locality (Roofline)

The Roofline model visualizes bottlenecks by plotting
architectural performance bounds and applications charac-
teristics in a performance-data locality 2D plane [3]. The
performance (upper) bound is defined as a curve in the
plane wherein the arithmetic intensity (FLOPs per Byte)
is the data locality x-axis. Such visualizations allow us to
understand how well an architecture responds to increases
in data locality. Ideally, there is a linear relationship up to
the maximum performance of the machine. For brevity, we
will only present results obtained on the Arria 10.

In this work, we port the Empirical Roofline Tool
(ERT) [27, 28] to OpenCL and enable user-selection of
data type (float, int32, int8, etc...). ERT is premised
around evaluating an arbitrary degree polynomial for each
element of a vector. As one increases the degree of the
polynomial, one increases arithmetic intensity (more FLOPs
per byte). As one varies the vector size, one varies the cache
working set and quantifies bandwidth tapering within the
cache hierarchy. As one varies the data type, one varies the
natural quanta for memory access.

3



(a) Single element DRAM transfers

(b) Optimal DRAM transfers

Figure 1: Arria 10 ERT Roofline plot for float, double,
int8, int32, and int64 (dotted lines). Prior to tuning
(a), Roofline bandwidth depends on data type. Conversely,
after tuning (b), Roofline bandwidth on the Arria 10 mimics
the traditional Roofline. ERT polynomials create straight
lines on an FPGA architecture as pipeline synthesis adds
proportional compute and data movement as polynomial
degree increases. FPGAs are instead limited by available
resources to synthesize such data flow pipelines, with
resource-limited Roofline ceilings shown in solid colors.
Optimal unrolling fills a 512-bit wide DRAM transfer.

As FPGAs do not have a hardware cache hierarchy, we
do not observe any benefit for reduced vector sizes unless
data is explicitly placed in BRAM. Moreover, whereas
CPU cache hierarchies regiment DRAM and SRAM data
movement in quanta of cache lines, FPGAs provide natural
width access to DRAM up to the hardware controller limit
while BRAM controllers are synthesized for purpose with
many configuration options. Although a wide transaction to
DRAM may be initiated, without a cache, only the data
needed within a given clock cycle is returned (neighboring
intra-line data is discarded). Ultimately, exploitation of spa-
tial locality is a fine balance between synthesized frequency,
data parallelism, compile-time knowledge of memory access
pattern, and the compiler’s ability to synthesize a burst-
coalesced load store unit. Thus, it is imperative one bench-
mark the system in order to quantify attainable bandwidth.

Figure 1(a) highlights that unlike CPUs and GPUs, FPGA

bandwidth without tuning can vary from 0.6 (int8) to
5GB/s (double/int64) — far less than the theoretical
memory bandwidth of 34GB/s. This is shown to be a
pipeline bottleneck by dividing measured bandwidth by the
kernel clock frequency of roughly 312MHz. The approxi-
mately 2 bytes for int8 and approximately 16 bytes for
double and int64 is exactly the amount of data read
and written each clock cycle. Unlike instruction processors
where hardware is dedicated for either bandwidth or com-
pute, resources on FPGAs are fungible. As a result, we
define a set of compiler-derrived theoretical Roofline ceilings
based on available FPGA resources and arithmetic intensity.

Two major approaches to optimization can improve band-
width. First, unlike CPUs and GPUs which run at a relatively
constant frequency, FPGA frequency is highly dependent
on the compiler. We attained a 34% increase in bandwidth
through the addition of the __fpga_reg() intrinsic in
order to exploit reuse within the polynomial. Second, one
can increase data parallelism (replicate pipelines) via the
#pragma unroll directive. Figure 1(b) shows that after
tuning, bandwidth is a consistent 30GB/s regardless of data
type. However, unlike CPUs and GPUs where one sees
performance saturate at the peak performance of the archi-
tecture, we see no saturation in FPGA performance. Rather,
the tool set exhausts resources (abrupt end of trendlines)
prior to saturating performance. This is because increasing
the number of ERT operations increases the data pathway
proportionally to the compute resources used. A kernel
which passes data multiple times through the same pipeline
before leaving the kernel may face pipeline width bottle-
necks or data ingest/write bottlenecks depending upon the
data flow. An ERT polynomial calculated by multiple passes
through a smaller polynomial would see the Roofline plateau
at the point of the smaller polynomial. Future work will
investigate transformations that exploit graph similarity to
maximize performance while reducing hardware utilization.

Figure 2 shows the benefit of manually unrolling to in-
crease data parallelism and performance. Overall, unrolling
by 32 improves bandwidth for intensities less than 16 by
about 16× to about 30GB/s. However, for high intensity,
unrolling can result in unsynthesizable code that fails to run.
In this regime, one must reduce unrolling to successfully
compile and saturate performance at about 930GFLOP/s.

We will use Roofline data throughout the paper to as-
sess the results of our kernel benchmarking. For a given
architecture, we may introspect its Roofline based on a
kernel’s arithmetic intensity. This informs us of how well
the implementation of a kernel can make use of a target
machine while the Roofline relative to pin bandwidth and
the number of FMAs tells us how well an architecture can
exploit the underlying technology.

Although the Arria 10’s sustained bandwidth and peak
performance is less than that of a CPU or GPU, it often
requires far less power. Figure 3 plots the relationship

4




	introduction
	Related Work
	Experimental Setup
	Evaluated Architectures
	Programming Models
	Performance and Power Instrumentation

	FPGA Microbenchmarks
	Temporal Locality (Roofline)
	Spatial Locality

	HPC Kernels
	Dense Matrix-Matrix Multiplication
	Sparse Matrix-Vector Multiplication (SpMV)
	Banded Smith-Waterman (BSW)

	Conclusions and Future work

